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An exact solution is found to the unsteady problem of flow formation along an inclined plane, 

compensating diffusive transfer in a stationary infinitely deep continuously stratified fluid whose 

density depends only on the concentration of dissolved matter (salinity). 

IN A STRATIFIED medium whose density is governed by an associated stable distribution of 
salinity (or temperature), a molecular flux of the stratifying agent is established. If it is 
horizontally inhomogeneous, then a necessary condition for the stability of the medium at rest 
is violated even when there are no destabilizing external factors. Such a phenomenon occurs 
near an impermeable inclined boundary at which the normal component of the gradient of the 
stratifying agent vanishes, so that the isohalines (isotherms), which in the undisturbed medium 
are situated horizontally, are distorted. The resulting pressure gradient in a homogeneous 
gravitational field accelerates the fluid layer along the boundary and forms a convective flux 
that compensates for the weakened molecular transfer near the boundary. The fact that the 
flow occurs does not depend on the shape of the boundary. The mathematical problem has its 
simplest form when an infinitely deep fluid is divided into two domains by an impermeable 
inclined plane. The flow ascends along the upper boundary and descends along the lower one. 

This effect was first pointed out by Prandtl [l, p. 5071 when analysing the nature of hill and 
valley winds in a thermally stratified atmosphere. A calculation [2, 31 was performed for a 
steady flow in the case of salt stratification, and asymptotic solutions were obtained [4] for the 
unsteady problem in the limits of short and long times. 

1. STATEMENT OF THE PROBLEM 

Consider an unbounded medium initially at rest, that is linearly stratified along the vertical 
direction, the density distribution being given by the relation 

P = PO (1 + Psi (Z)), Psi(Z) = -OoZ/A (1.1) 

Here z is the vertical coordinate pointing in the opposite direction to the gravitational force, 
A is the stratification length-scale, p = (dplds),, is the coefficient of salt compression, q, is a 
dimensionless constant, S is the salinity, and S,(z) is the unperturbed salinity distribution. 

At the initial instant the medium with density distribution (1.1) is at rest and there is no 
external perturbation. In the plane formulation we will seek the salinity distribution and the 
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velocity field at subsequent times. The system of coordinates (4, q), 5 E (--, +m), q E [0, +OO) 
is attached to the plane (Fig. l), and a is the angle of inclination of the plane to the horizontal. 

The system of hydrodynamic equations in the Boussinesq approximation has the form 

Si + $8 + ‘US,, - u. (U since + ucoscu)/A = k (S;; + S& ) 

ll; +uu; +vu; = --pi + Y (u;; + u(Q ) - Qd since 

v; suv; +vv; = -p; 4-V (u;; + 0;; ) - sg coscz u; + u; = 0 0.2) 

Here S is the perturbation of the initial salinity distribution normalized on p, u and 2) are the 
velocity components along 4 and 9, respectively, g is the acceleration due to gravity, p is the 
pressure less the hydrostatic pressure reduced by p,,, and k and v are the saline diffusivity and 
kinematic viscosity, respectively. 

The no-slip condition for the velocity and the impermeability condition for the salinity are 
satisfied on the plane 

(&+s):, =u = u= Olwhenn= o 

The initial conditions and the conditions at infinity are that the salinity, pressure and velocity 
perturbations vanish. 

2. ANALYSIS OF POSSIBLE SOLUTIONS 

Some properties of the form of the solution follow from an analysis of the problem. 
Because the solution of system (1.2) has translational invariance with respect to shifts along 

the 5 axis, it can be represented in the form of a Fourier series expansion with respect to this 
variable 

S=So+ g lS,‘coslp,(~,1))+S,Ssin~~(r,7))f 
n=l 

Here ~~(4, q)=2mc/L, where L is the translation period. Both L and the Fourier co- 
efficients in (2.1) are functions of q, rand a. 

FIG. 1. 
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Investigation of the symmetry of the problem with respect to variation of the angle of 
inclination a leads to the relations 

so (a) =&-a), s,’ (a) = s,’ (-a), s; (a) = -s,” (-a) 

uo (a) = -U&Y), u,” (a) = -u,’ (-a), u; (a) = u; (-a) (2.2) 
v,” (a) = v,’ (-a), v,” (a) = - c (-a) 

By substituting (2.1) into (1.1) we can obtain a cumbersome but explicit system of equations 
and boundary conditions for the Fourier coefficients. The equations in this system are non- 
linear and it is therefore difficult to find the solution by some direct method. In this case, it is 
natural to use the method of successive approximations. The system of equations in the zeroth 
approximation has the form 

s;, - KS&, = u. UoA-‘sincu, Ubt - VU&, = -Sag sina (2.3) 

with boundary and initial conditions 

Sd? = ooh-‘cosq U. =0 at 7) = 0 

so= u, =0 at t=O 

Here U,, and S,, are the Fourier coefficients of expansions (2.1). 
In order to avoid non-uniformity of the solutions with respect to a, the functions U, and S,, 

are expanded as Fourier series satisfying properties (2.2) 

Uo= Z H,sin(na), So= Q, + : Qn cos(ncu) (2.4) 
n=1 fI=1 

where Z9. and Q, are functions of 9 and t. 
As a result of substituting (2.4) into (2.3), an infinite system of equations is obtained for H,, 

and Q, 

Q:, r - kQ&, = oo(Hn+l-H”_1)/(2A), n=O,l,...;HtJ=H_, =o 

H’ nr - vH&, = g (Qn- 1 - Q,+1)/2, n = 2,3, . . . 

H’I r - vH;,, = g (2Qo - Qz l/2 

(2.5) 

Here 

H,=O, n=l,2 ,... at 7) = 0, 

Q;, = oo/k Q’,, =O,n#l at r)=O 

H,=Qn =0 at t=O 

It follows from (2.5) and the initial and boundary conditions that 

Qzn= Hzn+l =0, n=O, l,... 

As a result, expansion (2.4) acquires the form 

Here it is convenient to change to dimensionless physical coordinates, normalizing the time 
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to the buoyancy frequency N ={g/A)x, the coordinates to the length-scale (v/~~~, the 
velocity to (Ag)X, and the salinity to 0~12. Moreover, we introduce two dimensionless 
parameters A = -6, / 4 and E = kl v. Then for the functions M, and K,, we have the equations 

K’ nr - EK,;, =Mn--M,,-1 

Mrh -Xz& =A(K,-K,+& n=1,2,..*,M~=O (2.6) 

M,=K;,=...=K;,=... =0,K',,=2&/(NA2) at n =0 

In order to carry out an iterative procedure for finding the coefficients (Mi}, (rir,}, it is 
necessary to make a change of variables in order to separate the variables. 

3. SOLUTION OF THE PROBLEM IN THE ZEROTH APPROXIMATION 

At the first stage of the solution we change from the variables {M,), (KJ, to the variables 
{pi}, {xi} using the rules 

K,=Kl +K, +KJ+..,, /LI= 'Ml +mz +3M3 +w 

K3 =K3 + SK3 f W4 + .,. , ~2 =M2 + ‘%fz + NM4 + a.. (3.1) 

K3 =Kj + SK4 + 15KS + . . . , p3 =Ms + 6M4 + 21Ms + .a. I 

The coefficients in these infinite expansions are obtained using Pascal’s triangle, see Fig. 2. 
As a result system (2.6) takes the form 

‘ II 

Kflt - fKnnr) = h- 1 

d* ,I 

- CtWl =AK,,?z=~,~,...; A= 0; 

~n=K;?=...=Kn:,=...=O, Kir)=2dm at q =O 

(3.21 

Sequential integration of (3.2) using Green’s functions gives rise to considerable technical 
difficulties. Hence to obtain an explicit form of the solution we perform a second stage, in 
which we determine the set of infinitesimal operators admitted by system (3.2) 

I %J = g fKnaKn+m fPnalt,+m)s r?z= 1,2,...) 
n=l 

F1c.2. 
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We then determine the group invariants of the linear combination 

as a result of which the solution of system (3.2) is represented in the form 

(3.3) 

Substituting (3.3) into (3.2) we obtain a system of ordinary differential equations whose 
solution is described by the expressions 

(q=4n-2m, U(nt f ,x) = 

The coefficients ai, /?E, r: and ~5: are given by the recurrence relations 

at: = -4 (k/?l)% (g As)- ‘/I 

mm:+, = Ym n--l, ffls:+t = A&, rn?$+t +(e-- l)$J(2E)=AGl 

m = 1, 2, . . . . n-l; n=2, 3,... 

mrm+l+(l --~)~~/2=6,“-~, m= 1,2 ,..., n-2; n=3,4 ,... 

(1 - w: - t/2 = SnnC1t, n =2,3, . . . 

(f - 1) r”n/(2iz)=Aa”,, n = 1,2, . . . 

(3.4) 

(3.5) 

2ntyn+ni1 2m I OLn +&v 1 
r w 

n m = 0, n = 2, 3, . . . 
St=1 m r@z-m) 

; 
2m I$ +s;1 

m=l r(2n-m+ ‘/z) 
=o, n= 1,2,... 

Then, after the functions R, and T,, and hence also K,,, and &, are determined, it is 
necessary, using relations (3.1), to determine K,, and M,, which are the coefficients in the 
expansions for SO and U,. 

Reversing relations’ (3.1) we obtain 

K1 =u1 -K? +2ri3-!Gcq f... , M1=~1--2112 +5113-... 

& =Kz -3K3 +gKh-... , MS = jl2 - 4c(3 + 14j.lc3 - .** (3.6) 

K3fK3 - SK,, + 20K5 -.a. , M3 = p3 - 6p., + 27~s - a.+ 

The coefficients in expansions (3.6) are obtained by means of a Pascal-type triangle in which 
the difference between the right and left elements of a row gives the value found between them 
in the row below (see Fig. 3). 

Thus, a solution of system (2.3) is obtained which satisfies the appropriate initial and 
boundary conditions. 
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1 Kl 
4 J 

K2 1 1 
M,J-1 0 

KS 1 1 -1 
$1-2 0 
1 -3 2 

1 -4 5 0 

FIG. 3. 

4. ANALYSIS OF THE SOLUTION 

An important property of the solutions obtained is that they are also exact solutions of non- 
linear system (1.2) with the given boundary and initial conditions, which enables us to compare 
them with the results of [l-3] on a new basis. 

The nature of the solution is governed by the structure of the function U from (3.4) 

U(2n - -; , -#)’ e-x2 g akx2* +x erfc (x) i?t b”, XZm 
??I=0 m=o 

where the explicit form of the coefficients 4 and &, is governed by the form of the integral 
representation for U. Consequently, one can assert that the perturbation of the velocity field 
and density variation in the boundary flow are monotonic functions of time and do not have a 
stationary limit. The velocity distribution is a sign-constant function, unlike in [l-3] where the 
solution involves counterflows. 

Analysis enables us to distinguish two time-dependent length-scales, describing the spatial 
distribution of the velocity and density (salinity) perturbations. 

Far from the wall (- > q > d(2vt)) all the perturbations are small. 
In the intermediate region (d(2vt) > ?l> d(2kt)) the perturbations reach a maximum value 

and the density variations are small. As in [l], this region may be referred to as the dynamical 
(or velocity) boundary layer, whose thickness is 8, - 4(2#). 

In the third region, which is directly adjacent to the plane at v lk > 1, d(2kt) > q 3 0, the 
salinity perturbation attains its maximum value. The velocity variation is weaker than in 
the second region. This part of the flow can be referred to as the concentration (or density) 
boundary layer, with thickness 8, - d(2kt) [5]. 

The ratio of the characteristic sizes of these regions does not depend on time and is given by 
the Schmidt number &/S, =d(vlk)= I. The density boundary layer lies inside the 
dynamical layer when SC > 1 (metal salt solutions and sea water [6]). The dynamical layer is 
thinner than the density layer in the atmosphere, in metallic melts and in mercury (SC c 1). One 
can conjecture that in a multicomponent medium the number of such layers and the ratios of 
their length-scales are determined by the number and values of the transfer coefficients. (The 
steady-state solution [l-3] has a single length-scale because the distributions of the salinity and 
velocity perturbations are similar.) The exact solution agrees with the well-known solutions of 
the heat-conduction equation in a medium at rest when a = 0 and a = +x/2. The velocity of 
the induced flow is a maximum when a = a/4. 

The first terms of solution (3.4) 

s = “0 

A 
J-’ -y \ fiy erfc ( y 

2 

) cow 

2Ji- 
) -2 exp(- $ 

1 
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2g f 
U= 

A (I - E) 

- f(I+ f )exp(- -g ) + $ J- 
Y 

-+ (I t &)erfc(- 

2Ji)) 

sln2o 

agree at short times with the one-component approximation of the asymptotic solution of [4]. 
The solution (3.4) obtained is analytic in all the physical parameters of the problem. 

A special feature of the method used to construct the exact solution is that the approximate 
solutions containing a finite number of terms in (3.4) also satisfy the boundary and initial 
conditions exactly. This property is important because the existence of the flow is precisely due 
to the influence of the boundary. Because expansion (3.4) at a given instant of time converges 
fairly rapidly, for quantitative and qualitative analysis it is possible to retain just a few leading 
terms. 

The unlimited increase of the solution with time implies the possibility of violating the 
Boussinesq approximation conditions at long times and the need to take into account the finite 
size of actual physical systems. 

Comparison with high-resolution observations of stratified flows [5,7, 81 shows that length- 
scale decoupling phenomena which substantially affect the structure and symmetry of complex 
flows in the immediate neighbourhood and at considerable distances from the body, are due to 
drifting of a decoupled boundary layer and induced by cutting the molecular background flux 
off by a resting or moving obstacle. 
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